
February 1999 The Delphi Magazine 53

COM Corner:
ActiveX Documents, Part 1
by Steve Teixeira

It’s funny, but OLE developers
used to be concerned with link-

ing and embedding things. After all,
OLE used to stand for Object
Linking and Embedding. Linking
and embedding isn’t something we
think about very often these days.
In fact, we tend to take these things
for granted, thanks to the perva-
siveness of ActiveX controls. Heck,
we don’t even call ourselves OLE
developers anymore, we’re COM
developers now. With this instal-
ment of COM Corner, we’re going to
go back to our roots and have some
fun with embedding as we learn
about creating an ActiveX
Document server in Delphi 4.

ActiveX Documents
ActiveX Documents are the logical
extension of OLE 2.0 Document
Objects. You may recall that OLE
2.0 enables a document server to
be embedded in a client applica-
tion. As a part of the embedding
process, the document server can
take control of some or all of the
client area of the client and option-
ally merge its own menus and
toolbars with those of the client.
The classic example of this is the
proverbial Excel spreadsheet
embedded within a Word docu-
ment. ActiveX Documents
extended this concept by formaliz-
ing the means by which servers
and clients communicate with one
another and providing the ability
for ActiveX Documents to be
served over the web using Internet
Explorer as the client. This article
will provide you with a technical
description of ActiveX Documents
and a basic framework for creating
ActiveX Document servers based
on the Delphi ActiveX framework,
usually known as DAX.

Put plainly, an ActiveX Docu-
ment server is just an Automation
server than supports a number of
specific interfaces. Table 1 lists the

interfaces that a server must imple-
ment in order to be an ActiveX
document server.

Abstractly speaking, the ActiveX
Document architecture is made up
of frames, documents and views.
The frame is the ‘socket’ provided
by the container application in
which the ActiveX Document
resides. The document is the
server data being manipulated in
the container. The item represents
a specific view of the document
data. If you’ve done any MFC pro-
gramming in the past, you might
recognize the ActiveX Document
architecture as being similar to the
MFC document/view architecture.
Tying the abstract architecture to
the COM interfaces mentioned
above, the IOleDocument interface
represents the document, while
the IOleDocumentView interface

represents a view on a particular
document. The frame and associ-
ated container logic is represented
by various interfaces on the client
side. This includes, in particular,
IOleInPlaceFrame, IOleInPlace-
Site, and IOleContainer.

Delphi Implementation
Implementing an ActiveX Docu-
ment from scratch would be a
pretty tall order, considering the
number of required interfaces and
the complexity of the implementa-
tion of those interfaces. Being a
lazy programmer at heart, I really
wasn’t eager to dive in and start
implementing a bunch of large
interfaces. And if you’re an ActiveX
propeller-head like me, you may
have noticed that the interface
requirements for ActiveX Docu-
ments are very similar to those of

Interface Description

IPersistStorage Enables the use of OLE structured storage as a
persistence mechanism for server.

IPersistFile Enables the use of OLE compound files as a
persistence mechanism for server.

IOleObject The principal interface by which the embedded
object communicates with the container.

IDataObject Defines data transfer capabilities and data
format.

IOleInPlaceObject Manages the activation and deactivation of
in-place objects, and determines how much of
the in-place object should be visible.

IOleInPlaceActiveObject Provides the communications channel between
the in-place object and the client application
that contains the embedded object.

IOleDocument Provides information to containers on ActiveX
Document’s ability to create views of its data.

IOleDocumentView Enables container to communicate with various
views of ActiveX Document object.

IOleCommandTarget OPTIONAL. Enables objects and containers to
dispatch commands to one another.

IPrint OPTIONAL. Enables ActiveX Documents to
support programmatic printing.

➤ Table 1: ActiveX Document interfaces.

54 The Delphi Magazine Issue 42

ActiveX controls. In fact, all of the
required interfaces for ActiveX
Documents are implemented by
DAX’s TActiveXControl class, save
for the IOleDocument and IOle
DocumentView classes. Therefore, as
you will see, I was able to create a
new class, which I call TActiveX
Document, that descends from
TActiveXControl and encapsulates
an ActiveX Document. Listing 1
shows the AxDocs unit, which
contains the TActiveXDocument
class and its corresponding class
factory, TActiveXDocumentFactory.

Before explaining the meat of the
TActiveXDocument class, I feel com-
pelled to apologize for the nasty
little hack I use to obtain access to
the private FOleInPlaceSite
pointer found in the ancestor
TActiveXControl class. Since the
designer of TActiveXControl never
intended it to be used as a base
class for ActiveX Documents, he or
she didn’t know the GetInPlaceSite
and SetInPlaceSite methods of
IOleDocumentView would be
implemented on a descendant of
this class and so chose to keep the
FOleInPlaceSite field private. I get
at this private data by determining
the instance size of immediate

ancestor of TActiveXControl and
adding the correct number of
bytes to the offset of the
FOleInPlaceSite field. A neat trick,
yes, but not exactly exemplary
object oriented technique.

Another point of interest in the
TActiveXDocument class is the
ObjQueryInterface method, which
prevents an IOleLink pointer from
being returned to the caller. If a
container finds that an object sup-
ports IOleLink, it will assume the
ActiveX Document is linked rather
than embedded.

The IOleDocument implementa-
tion for TActiveXDocument is rather
straightforward because this is a
simple ActiveX Document that sup-
ports only one view. The IOle
DocumentView implementation is
also fairly simple, as you can see by
the small amount of code used to
implement each method. Most
notable are the Show and UIActivate
methods, which make a call to the
InPlaceActivate helper function
found in TActiveXControl that han-
dles the complexities of in-place
activation and UI-activation of an
OLE object.

I have created a special
TActiveXDocumentFactory class

factory object, mostly to handle
the extra registry entries needed
for ActiveX Documents. By over-
riding the factory’s Update Regis-
try method, I can do any special
registry processing for the server
that will occur when the server’s
DllRegisterServer and DllUnreg-
isterServer exports are called.

Armed with this base class, I can
now implement an example
ActiveX Document. Thanks to the
fact that TActiveXDocument and its
ancestors do the majority of the
work for me, the implementation
for my example ActiveX Document
is relatively small, and it is shown
in Listing 2.

I actually created this unit by
using the Automation Wizard to
create a new Automation object
and massaging the code by hand a
little bit. In particular, I changed
the ancestor of TDelphiAxDoc from
TAutoObject to TActiveXDocument,
and modified the code that creates
the class factory so that it is appro-
priate for TActiveXDocument-
Factory. This example simply uses
a TMemo as the ActiveX Document.

After the application is compiled
and registered, it is ready to test.
To test this server, I will embed it
in a Visual Basic 6 application
using VB’s OLE control. After drop-
ping an OLE control on a VB form,
the Insert Object dialog is invoked
as shown in Figure 1.

After selecting Delphi ActiveX
Document Object in the Insert
Object dialog, the object is
inserted in the OLE control, and
can be manipulated as shown in
Figure 2. Note that to run the
precompiled demo program on
the disk you will need
MSVBVM60.DLL, which you can get
from http://pcworld/fileworld/
along with much other useful stuff.

Summary
This article introduced you to the
basics of ActiveX Documents and a
server implementation in Delphi.
In next month’s issue, I will extend
this example even further by
demonstrating advanced ActiveX
Document concepts such as file

unit Main;
interface
uses
ComObj, ActiveX, AxDocs, DAXDoc_TLB;

type
TDelphiAxDoc = class(TActiveXDocument, IDelphiAxDoc)
protected
end;

implementation
uses
ComServ, StdCtrls;

initialization
TActiveXDocumentFactory.Create(ComServer, TDelphiAxDoc, TMemo,
Class_DelphiAxDoc, 0, 131473, tmApartment);

end.

➤ Facing page: Listing 1

➤ Below: Figure 1 ➤ Above: Listing 2

February 1999 The Delphi Magazine 55

unit AxDocs;
interface
uses Windows, ComObj, ActiveX, AxCtrls, Controls;
type
TActiveXDocument = class(TActiveXControl, IOleDocument,
IOleDocumentView)

private
function GetAncestorValueByField(FieldNum: Cardinal):
Cardinal;

procedure SetAncestorValueByField(FieldNum, Value:
Cardinal);

function GetOleInPlaceSite: IOleInPlaceSite;
procedure SetOleInPlaceSite(const Value:
IOleInPlaceSite);

protected
function CreateView(Site: IOleInPlaceSite; Stream:
IStream; rsrvd: DWORD;
out View: IOleDocumentView):HResult; stdcall;

function GetDocMiscStatus(var Status: DWORD):HResult;
stdcall;

function EnumViews(out Enum: IEnumOleDocumentViews;
out View: IOleDocumentView):HResult; stdcall;

function SetInPlaceSite(Site: IOleInPlaceSite):HResult;
stdcall;

function GetInPlaceSite(
out Site: IOleInPlaceSite):HResult; stdcall;

function GetDocument(out P: IUnknown):HResult; stdcall;
function SetRect(const View: TRECT):HResult; stdcall;
function GetRect(var View: TRECT):HResult; stdcall;
function SetRectComplex(const View, HScroll, VScroll,
SizeBox):HResult; stdcall;

function Show(fShow: BOOL):HResult; stdcall;
function UIActivate(fUIActivate: BOOL):HResult; stdcall;
function Open:HResult; stdcall;
function CloseView(dwReserved: DWORD):HResult; stdcall;
function SaveViewState(pstm: IStream):HResult; stdcall;
function ApplyViewState(pstm: IStream):HResult; stdcall;
function Clone(NewSite: IOleInPlaceSite; out NewView:
IOleDocumentView):HResult; stdcall;

public
function ObjQueryInterface(const IID: TGUID; out Obj):
HResult; override;

property OleInPlaceSite: IOleInPlaceSite
read GetOleInPlaceSite write SetOleInPlaceSite;

end;
TActiveXDocClass = class of TActiveXDocument;
TActiveXDocumentFactory = class(TActiveXControlFactory)
constructor Create(ComServer: TComServerObject;
ActiveXDocClass: TActiveXDocClass; WinControlClass:

TWinControlClass; const ClassID: TGUID;
ToolboxBitmapID, MiscStatus: Integer;
ThreadingModel: TThreadingModel);

procedure UpdateRegistry(Register: Boolean); override;
end;

implementation
uses ComServ;
function TActiveXDocument.ObjQueryInterface(
const IID: TGUID; out Obj): HResult;

begin
// Must stub out IOleLink, or container will assume this
// is a linked object rather than an embedded object.
if IsEqualGuid(IID, IOleLink) then
Result := E_NOINTERFACE

else
Result := inherited ObjQueryInterface(IID, Obj);

end;
function TActiveXDocument.GetOleInPlaceSite :
IOleInPlaceSite;

begin
// Work around fact that FOleInPlaceSite is private in
// TActiveXControl. only guaranteed to work in Delphi 4
Result := IOleInPlaceSite(GetAncestorValueByField(9));

end;
procedure TActiveXDocument.SetOleInPlaceSite(
const Value: IOleInPlaceSite);

begin
// Work around fact that FOleInPlaceSite is private...
SetAncestorValueByField(9, Cardinal(Value));

end;
function TActiveXDocument.GetAncestorValueByField(
FieldNum: Cardinal): Cardinal;

var ParentInstanceSize, Ofs: Cardinal;
begin
// Nasty hack: returns value of a field in ancestor class,
// assuming given field and all prior fields are 4 bytes
ParentInstanceSize :=
ClassParent.ClassParent.InstanceSize;

Ofs := ParentInstanceSize+((FieldNum-1)*4);
asm
mov eax, Self
add eax, Ofs
mov eax, dword ptr [eax]
mov @Result, eax

end;
end;

{** LISTING CONTINUES ON NEXT PAGE... **}

56 The Delphi Magazine Issue 42

procedure TActiveXDocument.SetAncestorValueByField(FieldNum,
Value: Cardinal);

var ParentInstanceSize, Ofs: Cardinal;
begin
// Nasty hack... (as before)
ParentInstanceSize :=
ClassParent.ClassParent.InstanceSize;

Ofs := ParentInstanceSize + ((FieldNum - 1) * 4);
asm
mov eax, Self
add eax, Ofs
mov ecx, Value
mov dword ptr [eax], ecx

end;
end;
function TActiveXDocument.CreateView(Site: IOleInPlaceSite;
Stream: IStream; rsrvd: DWORD;
out View: IOleDocumentView): HResult;

var OleDocView: IOleDocumentView;
begin
Result := S_OK;
try
if View = nil then begin
Result := E_POINTER;
Exit;

end;
OleDocView := Self as IOleDocumentView;
if (OleInPlaceSite=nil) or (OleDocView=nil) then begin
Result := E_FAIL;
Exit;

end;
if Site <> nil then
OleDocView.SetInPlaceSite(Site);

if Stream <> nil then
OleDocView.ApplyViewState(Stream);

View := OleDocView;
except
Result := E_FAIL;

end;
end;
function TActiveXDocument.EnumViews(out Enum:
IEnumOleDocumentViews; out View: IOleDocumentView):
HResult;

begin
Result := S_OK;
try
View := Self as IOleDocumentView;

except
Result := E_FAIL;

end;
end;
function TActiveXDocument.GetDocMiscStatus(
var Status: DWORD): HResult;

begin
Status := 8 {DOCMISC_NOFILESUPPORT};
Result := S_OK;

end;
function TActiveXDocument.ApplyViewState(pstm: IStream):
HResult;

begin
Result := E_NOTIMPL;

end;
function TActiveXDocument.Clone(NewSite: IOleInPlaceSite;
out NewView: IOleDocumentView): HResult;

begin
Result := E_NOTIMPL;

end;
function TActiveXDocument.CloseView(dwReserved: DWORD):
HResult;

begin
Result := S_OK;
try
Show(False);
SetInPlaceSite(nil);

except
Result := E_UNEXPECTED;

end;
end;
function TActiveXDocument.GetDocument(out P: IUnknown):
HResult;

begin
Result := S_OK;
try
P := Self as IUnknown;

except
Result := E_FAIL;

end;
end;
function TActiveXDocument.GetInPlaceSite(
out Site: IOleInPlaceSite): HResult;

begin
Result := S_OK;
try
Site := OleInPlaceSite;

except
Result := E_FAIL;

end;
end;
function TActiveXDocument.GetRect(var View: TRECT): HResult;
begin

Result := S_OK;
try
View := Control.BoundsRect;

except
Result := E_UNEXPECTED;

end;
end;
function TActiveXDocument.Open: HResult;
begin
Result := E_NOTIMPL;

end;
function TActiveXDocument.SaveViewState(pstm: IStream):
HResult;

begin
Result := E_NOTIMPL;

end;
function TActiveXDocument.SetInPlaceSite(
Site: IOleInPlaceSite): HResult;

begin
Result := S_OK;
try
if OleInPlaceSite <> nil then
Result := InPlaceDeactivate;

if Result <> S_OK then
Exit;

if Site <> nil then
OleInPlaceSite := Site;

except
Result := E_UNEXPECTED;

end;
end;
function TActiveXDocument.SetRect(const View: TRECT):
HResult;

begin
// Implement using TActiveXControl's
// IOleInPlaceObject.SetObjectRects impl
Result := SetObjectRects(View, View);

end;
function TActiveXDocument.SetRectComplex(const View;
const HScroll; const VScroll; const SizeBox): HResult;

begin
Result := E_NOTIMPL;

end;
function TActiveXDocument.Show(fShow: BOOL): HResult;
begin
try
if fShow then
Result := InPlaceActivate(False)

else begin
Result := UIActivate(False);
Control.Visible := False;

end;
except
Result := E_UNEXPECTED;

end;
end;
function TActiveXDocument.UIActivate(fUIActivate: BOOL):
HResult;

begin
Result := S_OK;
try
if FUIActivate then begin
if OleInPlaceSite <> nil then
InPlaceActivate(True)

else
Result := E_UNEXPECTED;

end else
UIDeactivate;

except
Result := E_UNEXPECTED;

end;
end;
constructor TActiveXDocumentFactory.Create(ComServer:
TComServerObject; ActiveXDocClass: TActiveXDocClass;
WinControlClass: TWinControlClass; const ClassID: TGUID;
ToolboxBitmapID, MiscStatus: Integer; ThreadingModel:
TThreadingModel);

begin
inherited Create(ComServer, ActiveXDocClass,
WinControlClass, ClassId, ToolboxBitmapID, '',
MiscStatus, ThreadingModel);

end;
procedure TActiveXDocumentFactory.UpdateRegistry(
Register: Boolean);

var ClassKey: string;
begin
ClassKey := 'CLSID\' + GUIDToString(ClassID) + '\';
if Register then begin
inherited UpdateRegistry(Register);
CreateRegKey(ClassKey + 'DocObject', '', '8');
CreateRegKey(ClassKey + 'Programmable', '', '');
CreateRegKey(ClassKey + 'Insertable', '', '');

end else begin
DeleteRegKey('DocObject');
DeleteRegKey('Programmable');
DeleteRegKey('Insertable');
inherited UpdateRegistry(Register);

end;
end;
end.

February 1999 The Delphi Magazine 57

associations, menu and toolbar
merging, and web delivery of
ActiveX Documents. Until then, I
hope you enjoy this rediscovery of
old-school embedding.

Steve Teixeira is the Director of
Software Development at DeVries
Data Systems, a software consult-
ing and training firm. Send your
comments, questions, or article
ideas to Steve by email at
steve@dvdata.com

➤ Right: Figure 2

	ActiveX Documents
	Delphi Implementation
	Summary

